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Quantum chemistry simulations aim at predicting physical properties of molecular and materials systems such
as the potential energy, spatial conformation, response properties. They are numerically very demanding and
represent a large part of the use of supercomputers (around 35% [8]). Indeed, due to the small size of the
considered systems, quantum models (e.g. Density Functional Theory, Hartree-Fock, arising as simplified models
of the Schrödinger equation) modelling the electronic structure of the systems must be used to obtain accurate
predictions of such physical quantities. Mathematically speaking, these models are nonlinear and eigenvalue partial
differential equations. Reducing the computational cost of such simulations is therefore key to reduce the footprint
of such calculations, and/or increase the size of the simulated quantum systems.

Recently, optimal transport [4], which allows to compare probability densities, has gained a lot of attention,
and has been used in many applications, such as color transfer or texture synthesis in vision [3], financial products
valuation, as well as rapid calculation of approximate solutions of partial differential equations [2]. Unfortunately,
methods based on optimal transport cannot directly be used in the context of quantum chemistry, as the solutions
to the corresponding equations are not probability distributions but density matrices (self-adjoint, trace-class
operators).

In this PhD, the goal will be to focus on a recent extension of optimal transport called Quantum Optimal
Transport [1] (QOT), and which aims at generalizing optimal transport for density matrices. Interestingly, density
matrices also appear in the context of quantum computing as e.g. qbits are density matrices. Potential applications
of QOT also include using QOT for solving combinatorial optimization problem in a quantum way (quantum
annealing [6]), quantum channels and distances on multiqbits systems [5].

The first objective will be to develop and study, from a mathematical and numerical point of view, quantum
Wasserstein barycenters, in the sense of QOT, e.g. extending the traditional notion of Wasserstein barycenters
in the context of optimal transport between probability measures as introduced in the seminal paper [9]. Indeed,
such barycenters should be used in principle to interpolate self-adjoint trace-class operators in a Wasserstein sense,
such as qbits or multiqbits systems (in the finite-dimensional case) or density matrices as appearing in quantum
chemistry (infinite-dimensional case).

The second objective of this PhD is to propose novel numerical methods for constructing new reduced-order
models in order to accelerate parametrized electronic structure calculations. In particular, we would like to focus
on reduced-order modeling techniques in order to efficiently compute approximations of the density matrix in
parameter-dependent electronic structure calculations.

To summarize, the objectives of this PhD will be to

• study from a mathematical point of view the properties of quantum Wasserstein barycenters;

• design efficient numerical methods in order to compute them;

• use these objects to build efficient reduced-order models for the computation of the density matrix of
parameter-dependent electronic structure calculation problems in quantum chemistry, in the spirit of the
method proposed in [10] for the computation of the electronic density.
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