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Titre : "Empirical process methods in distributional regression".
Important : unlike the majority of thesis subjects offered by the doctoral school, this
subject will not be accompanied by any funding for the doctoral student. This
means that the candidate must be able to support themselves financially through another
means, such as full/part-time employment. The duration of the doctorate will therefore
be adjusted accordingly.

2 Introduction

The statistical framework of this thesis is the distributional regression problem, na-
mely : how to properly model and estimate the conditional cumulative distribution func-
tions (c.d.f.)

F ∗x (y) = P (Y ≤ y|X = x)

given n independent, identically distributed copies (Xi, Yi) of (X,Y ). It is crucial to em-
phasize that this topic is more intricate and challenging than what is typically encounte-
red in classical regression framework : instead of building point-to-point predictions for
E
(
Y | X = x

)
we rather predict the entire conditional distribution P

(
Y ∈ · | X = x

)
.

Distributional regression is of relevance in various fields, such as meteorology [7, 4], distri-
butional random forest [1], probabilistic forecasting [2], quantile regression [6], or struc-
tured additive distributional regression [5].
The distributional regression network (DRN) method has been developed by [8] as an
evolution of the classical Ensemble Model Output Statistics (EMOS) framework, adding
significantly more flexibility through the use of neural networks. More precisely, given{

Fµ,σ, µ ∈ R, σ > 0
}
,

a parametric collection of c.d.f (i.e, a parametric model for the laws of Y given X = x),
it is assumed that

F ∗x (y) = Fµθ1 (x),σθ2 (x)(y),
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where both µθ1(·) and log σθ2(·) are regression neural networks. Therefore, the DRN
aims to enhance the model’s capability to represent complex phenomena by employing
approaches better suited to the nonlinear structures of meteorological data, as opposed
to traditional methods relying on linear and fixed links. This approach provides greater
flexibility and adaptability to model relationships between predictive variables and pa-
rameters in a more realistic manner.

In this thesis we will investigate the estimation procedure based on the empirical risk mi-
nimisation principle, with a risk function that is derived from the concept of Continuous
Ranked Probability Score (CRPS).

3 Background on distributional regression and main goals

3.1 Probabilistic forecast and its evaluation with scoring rules

We first consider the simple setting of probabilistic forecasting without covariate where
a a future observation Y ∼ G is predictive by a probability distribution F , called pre-
dictive distribution. Proper scoring rules are used in order to compare the predictive
distribution F and the materializing obervation y which are objects of different nature.
Let D ⊂ P(R) denote a subset of the set of all probability measures on R, often

identified with their c.d.f. A scoring rule 1 on D is a function S : D × R→ [0,+∞). The
quantity S(F, y) is interpreted as the error between the predictive distribution F and the
materializing observation y. The mean error when Y ∼ G is denoted by

S̄(F,G) = EY∼G[S(F, Y )].

The following notion of proper and strictly proper scoring rule is central in the theory.

Définition 3.1 The scoring rule S is said proper on D when

S̄(F,G) ≥ S̄(G,G), for all F,G ∈ D. (3.1)

It is said strictly proper when equality in Eq. (3.1) implies the equality F = G.

Stated differently, the scoring rule S is strictly proper on D when

arg min
F∈L

S̄(F,G) = {G}, for all G ∈ D.

The interpretation is that, in order to minimize its mean error, the forecaster has to
predict the "true" observation distribution G.
In this thesis, we will consider the Continuous Ranked Probability Score (CRPS, [7]).

This scoring rule is defined by the formula

S(F, y) =

∫
R

(
1{y≤z} − F (z)

)2
dz (3.2)

1. For the sake of simplicity, we consider only the case of real-valued observation Y and of non-
negative scoring rule. A more general definition can be found in [3].
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for all F finite absolute moment, that is the Wasserstein space

P1(R) =
{
F ∈ P(R) : m1(F ) =

∫
R
|y|F (dy) <∞

}
. (3.3)

One can easily check from this definition that

S̄(F,G) =

∫
R
G(z) (1−G(z)) dz +

∫
R

(F (z)−G(z))2 dz,

which implies

S̄(F,G)− S̄(G,G) =

∫
R

(F (z)−G(z))2 dz.

This quantity is nonnegative and vanishes if and only if F = G, ensuring that the CRPS
is a strictly proper scoring rule on the Wasserstein space P1(R).
The following formula, widely used in practice, provides a closed form expression for

the CRPS when the predictive distribution is the Gaussian distribution F = N (m,σ2) :
then

S(F, y) = σ
(
z(2Φ(z)− 1) + 2φ(z)− 1/

√
π
)
,

with z = (y − µ)/σ and Φ (resp. φ) denoting the cdf (resp. df) of the standard normal
distribution.

3.2 Model fitting, model selection and model aggregation

We now present the methods and aims of this thesis.

3.2.1 Theoretical risk in distributional regression

In a regression framework, we observe a sample Dn = {(Xi, Yi), 1 ≤ i ≤ n} of
independent copies of (X,Y ) ∈ Rd ×R. Distributional regression aims at estimating the
conditional distribution Y |X = x characterized by

F ∗x (y) = P (Y ≤ y | X = x) , x ∈ Rd.

The forecaster uses the trainging sample Dn and some algorithm to build a functional
estimator F̂n : : x 7→ F̂n,x of the map F ∗ : x 7→ F ∗x . The accuracy of this estimator is
here measured by its theoretical risk

R(F̂n) = E
[
S(F̂n,X , Y )

]
.

where expectation is taken with respect to the joint law of (X,Y ). This quantity can be
seen as the counterpart of the mean squared error in point regression. The excess risk of
F̂n is defined as

R(F̂n)−R(F ∗) = E
[
S(F̂n,X , Y )− S(F ∗X , Y )

]
= E

[
S̄(F̂n,X , F

∗
X)− S(F ∗X , F

∗
X)
]
≥ 0.
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The nonnegativity is ensured by the fact that S is a proper scoring rule according to
Definition 3.1. If S is strictly proper, the excess risk is equal to 0 if and only if F̂n,x = F ∗x
almost everywhere (with respect to PX(dx)).
For the CRPS, the excess risk is rewritten as

R(F̂n)−R(F ∗) = E
[∫

R

∣∣∣F̂n,X(u)− F ∗X(u)
∣∣∣2 du] .

3.2.2 Model fitting

Our first interest lies in model fitting by empirical risk minimization. Here we consider
a parametric family (Fθ)θ∈Θ, Θ ⊂ RK , where Fθ : x ∈ R 7→ Fθ,x ∈ D ⊂ P(R). The
empirical risk associated with Fθ is computed on the training sample Dn by

R̂n(Fθ) =
1

n

n∑
i=1

S(Fθ,Xi , Yi)

and is an empirical counterpart of the theoretical riskR(Fθ). Empirical risk minimization
consists in finding

θ̂n = arg min
θ∈Θ

R̂n(Fθ) (3.4)

and proposing the estimator Fθ̂n which is thought as almost optimal within the family
(Fθ)θ∈Θ. A classical decomposition of the excess risk of the corresponding estimator is
given by

R(Fθ̂n)−R(F ∗) =
(
R(Fθ̂n)− inf

θ∈Θ
R(Fθ)

)
+
(

inf
θ∈Θ
R(Fθ)−R(F ∗)

)
. (3.5)

where the two terms are called the estimation error and the approximation error respec-
tively. The approximation error is deterministic and depends on the ability of the family
(Fθ)θ∈Θ to approximate F ∗. The estimation error depends on the training sample Dn
and on the complexity of the familiy (Fθ)θ∈Θ. This decomposition is akin to the decom-
position of the mean squared error into squared bias and variance in point regression.
Our first goal is the following :
Goal 1 : provide non asymptotic estimates for the estimation errorR(Fθ̂n)−infθ∈ΘR(Fθ).

3.2.3 Model selection

Our second interest lies in model selection via validation error minimization. Here we
suppose that a validation sample D′N = {(X ′i, Y ′i ), 1 ≤ i ≤ N} is available, which is
assumed independent of the training sample Dn.
A common situation in machine learning is that we have M algorithms at hand that

are trained on Dn, resulting in models F̂ 1
n , . . . , F̂

M
n . In order to select the best model, we

compute the empirical risks on the validation sample

R̂′N (F̂mn ) =
1

N

N∑
i=1

S(F̂mn,X′i
, Y ′i )
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and select the model
m̂ = arg min

1≤m≤M
R̂′N (F̂mn ).

An oracle having access to the theoretical risk would have selected

m∗ = arg min
1≤m≤M

R(F̂mn ),

leading to the definition of the regret

R(F̂ m̂n )−R(F̂m
∗

n ) = R(F̂ m̂n )− min
1≤m≤M

R(F̂mn ).

Goal 2 : provide non asymptotic estimates for the regret R(F̂ m̂n )−min1≤m≤M R(F̂mn ).

3.2.4 Model aggregation

Our third interest lies in convex aggregation of models. With the same notation as
in Section 3.2.3, we define the convex aggregation of the models F̂ 1

n , . . . , F̂
M
n with the

weights λ1, . . . , λM by

F̂ λn,x =

M∑
m=1

λmF̂
m
n,x,

with λ = (λ1, . . . , λM ) an element of the simplex Λ = {λ : λm ≥ 0,
∑

1≤m≤M λm = 1}.
Note that F̂ λn is a valid estimator of F ∗ because the space P(R) of probability measures
is convex.
Similarly as in model selection, the best weights for convex agregation are obtained by

minimization of the validation error, that is we define

λ̂ = arg min
λ∈Λ

R̂′N (F̂ λn ).

Goal 3 : provide non asymptotic estimates for the regret R(F̂ λ̂n )−minλ∈ΛR(F̂ λn ).

4 The use of empirical processes theory

This thesis will be focused on exploring how to achieve goals 1,2,3 by using techniques
from empirical processes theory (see, e.g., [9] for a comprehensive monograph on the
topic). Indeed, it is clear that a crucial step is the control of

sup
θ∈Θ
| R̂n(Fθ)−R(Fθ) |, (4.1)

such as obtaining sharp upper bounds for its expectation or its probabilities of exceeding
ε > 0.
Note that (4.1) can be expressed as

sup
θ∈Θ

∣∣∣R̂n(Fθ)−R(Fθ)
∣∣∣ = sup

g∈G

∣∣∣ 1
n

n∑
i=1

g(Zi)− E(g(Z1))
∣∣∣. (4.2)
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Here we wrote Zi := (Xi, Yi) and

G :=
{
gθ, θ ∈ Θ

}
, with (4.3)

gθ : (x, y)→ CRPS(Fθ,x, y), (4.4)

and Θ is either a finite of infinite set depending on goal 1,2,3.
It is hence clear that it is worth exploring the properties of the class G which arises
depending on goals 1,2,3. Such properties have been intensively investigated since 1980 :

1. Controlling bracketing numbers of G. For example through the regularity properties
of the elements of G)

2. Controlling uniform entropy numbers. For example using the Vapnik-Chervonenkis
combinatorial theory.

Once this empirical approach will be well understood and proven successfull in the present
framework, the student will have the opportunity to extend it to other choices of scoring
rules.
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